觸覺是接觸、滑動、壓覺等機械刺激的總稱。多數動物的觸覺器是遍布全身的,像人類皮膚位于人的體表,并且遍布全身,觸覺器有很多種,有的感覺冷熱,有的感覺痛癢,還有的感覺光滑或是粗糙,不同部位的皮膚對不同個東西的觸覺不一樣,這是因為不同感受器分布的數量和種類不同。人類的臉部、嘴唇、手指等部位的各種感受器很多,所以這些部位的感覺很敏感。
人類皮膚的感知都是定性卻無法定量。而觸覺傳感器可以模仿人類皮膚,更讓人驚嘆的是,還可以把溫度、濕度、力等感覺用定量的方式表達出來,甚至可以幫助傷殘者獲得失去的感知能力。比如一款新型毛狀電子皮膚,能使機器人快速分辨出呼吸引起的輕微空氣波動或者微弱地心跳震動。這款傳感器甚至比人類皮膚更敏感,能夠廣泛應用于假肢、心率監視器以及機器人。
觸覺傳感器的主要功能
檢測功能
檢測功能包括對操作對象的狀態、機械手與操作對象的接觸狀態、操作對象的物理性質進行檢測。
識別功能
識別功能是在檢測的基礎上提取操作對象的形狀、大小、剛度等特征,以進行分類和目標識別。
觸覺傳感器的發展歷程
70 年代國外的機器人研究已成熱點,但觸覺技術的研究才開始且很少。當時對觸覺的研究僅限于與對象的接觸與否 接觸力大小,雖有一些好的設想 但研制出的傳感器少且簡陋。
80 年代是機器人觸覺傳感技術研究、發展的快速增長期,此期間對傳感器設計、原理和方法作了大量研究,主要有電阻、電容、壓電、熱電 磁、磁電、力、光、超聲和電阻應變等原理和方法。從總體上看 80 年代的研究可分為傳感器研制、觸覺數據處理、主動觸覺感知三部分,其突出特點是以傳感器裝置研究為中心 主要面向工業自動化。
90年代對觸覺傳感技術的研究繼續保持增長并多方向發展。按寬的分類法,有關觸覺研究的文獻可分為:傳感技術與傳感器設計、觸覺圖像處理、形狀辨識、 主動觸覺感知、結構與集成。
2002年,美國科研人員在內窺鏡手術的導管頂部安裝觸覺傳感器,可檢測疾病組織的剛度,根據組織柔軟度施加合適的力度,保證手術操作的安全。
2008年,日本Kazuto Takashima等人設計了壓電三維力觸覺傳感器,將其安裝在機器人靈巧手指端,并建立了肝臟模擬界面,外科醫生可以通過對機器人靈巧手的控制,感受肝臟病變部位的信息,進行封閉式手術。
2009年,德國菲勞恩霍夫制造技術和應用材料研究院的馬庫斯-梅瓦爾研制出新型觸覺系統的章魚水下機器人,可精確地感知障礙物狀況,可以自動完成海底環境的勘測工作。
觸覺傳感器分類
機器人感知能力的技術研究中,觸覺類傳感器極其重要。觸覺類的傳感器研究有廣義和狹義之分。廣義的觸覺包括觸覺、壓覺、力覺、滑覺、冷熱覺等。狹義的觸覺包括機械手與對象接觸面上的力感覺。從功能的角度分類,觸覺傳感器大致可分為接觸覺傳感器、力-力矩覺傳感器、壓覺傳感器和滑覺傳感器等。
壓阻式機器人觸覺傳感器
壓阻式觸覺傳感器是利用彈性體材料的電阻率隨壓力大小的變化而變化的性質制成,并把接觸面上的壓力信號變為電信號。
1981年,研究人員在金屬電極間夾入碳纖維和碳氈,構成壓阻傳感器;1999年,中國科學院使用力敏電阻制作了能檢測三維接觸力信息的陣列式觸覺傳感器;2007年,臺灣國立大學利用高分子壓阻復合膜設計研制了傳感范圍和靈敏度可調整的三軸觸覺傳感器。該三軸觸覺傳感器由四個傳感懸臂梁及粘貼在各懸臂梁表面和側面的高分子壓阻復合薄膜組成。
光傳感式機器人觸覺傳感器
南京航空航天大學設計的基于光波導原理的能檢測三向力的觸覺傳感器。觸覺傳感系統由力敏硅橡膠圓柱觸頭、圓錐觸頭組成,且圓柱觸頭與橡膠墊另一側的圓錐觸頭一一對應。新型光電敏感器件PSD,不僅可以檢測三向力,也可以確定受力位置信息。并且觸覺傳感器與視覺傳感器的輸出兼容,適用于機器人實時力控制和主動觸覺系統。
電容效應式機器人觸覺傳感器
電容式觸覺傳感器原理是:在外力作用下使兩極板間的相對位置發生變化,從而導致電容變化,通過檢測電容變化量來獲取受力信息。2008年,上海微系統與信息技術研究所傳感技術國家重點實驗室研制的柔性電容式觸覺傳感器可測量任意形狀物體表面的接觸力。
磁導式機器人觸覺傳感器
磁導式觸覺傳感器在外力作用下磁場發生變化,并把磁場的變化通過磁路系統轉換為電信號,從而感受接觸面上的壓力信息。
哈爾濱工業大學機器人研究所設計的基于磁敏Z元件的觸覺傳感器,其中磁敏Z元件能夠輸出隨磁場強度成比例變化的模擬電壓信號,靈敏度很高,工作條件要求很低,只要提供有變化的磁場就可以工作。采用平板磁鐵在空氣中的磁場強度衰減作為Z元件的敏感源,通過測量彈性裝置把力轉換為Z元件與磁鐵之間的距離,而Z元件與磁鐵之間的距離與磁場強度的變化是對應的,這樣,通過把磁場強度參數轉換為位移參數,再轉換為力的參數,從而達到測力的目的。
磁導式觸覺傳感器具有靈敏度高,體積小的優點,但與其它類型的機器人觸覺傳感器相比實用性較差。
壓電式機器人觸覺傳感器
壓電轉換元件是典型的力敏元件,具有自發電荷可逆的重要特性,而且具有體積小、質量輕、結構簡單、工作可靠、固有頻率高、靈敏度和信噪比高、性能穩定等優點。
2004年,重慶大學設計了利用壓電敏感材料檢測三向力的觸覺傳感器。傳感頭部分主要由基座、蓋子、傳感器內芯、調節機構等組成。傳感頭的內芯部分,主要由五個完全相同的壓電元件、一個正方體硬質合金、一段圓柱硬質合金、一段銅柱構成。
接觸覺傳感器
接觸覺傳感器用以判斷機器人是否接觸到外界物體或測量被接觸物體的特征的傳感器,主要有以下幾種類型。
微動開關式:由彈簧和觸頭構成。觸頭接觸外界物體后離開基板,造成信號通路斷開,從而測到與外界物體的接觸。
導電橡膠式:它以導電橡膠為敏感元件。當觸頭接觸外界物體受壓后,壓迫導電橡膠,使它的電阻發生改變,從而使流經導電橡膠的電流發生變化。
含碳海綿式:它在基板上裝有海綿構成的彈性體,在海綿中按陣列布以含碳海綿。接觸物體受壓后,含碳海綿的電阻減小,測量流經含碳海綿電流的大小,可確定受壓程度。
碳素纖維式:以碳素纖維為上表層,下表層為基板,中間裝以氨基甲酸酯和金屬電極。接觸外界物體時碳素纖維受壓與電極接觸導電。
氣動復位式:它有柔性絕緣表面,受壓時變形,脫離接觸時則由壓縮空氣作為復位的動力。與外界物體接觸時其內部的彈性圓泡(鈹銅箔)與下部觸點接觸而導電。
2023-06-19 07:40
2018-12-07 08:52
2018-12-07 08:50
2018-01-30 07:11
2018-01-23 07:32
2017-12-22 09:00
2017-12-22 06:44
2016-12-13 21:22
2016-12-06 18:04